基于transformers框架实践Bert系列4-文本相似度

本系列用于Bert模型实践实际场景,分别包括分类器、命名实体识别、选择题、文本摘要等等。(关于Bert的结构和详细这里就不做讲解,但了解Bert的基本结构是做实践的基础,因此看本系列之前,最好了解一下transformers和Bert等)
本篇主要讲解文本相似度应用场景。本系列代码和数据集都上传到GitHub上:https://github.com/forever1986/bert_task

目录

  • 1 环境说明
  • 2 前期准备
    • 2.1 了解Bert的输入输出
    • 2.1 了解Bert的输入输出
    • 2.2 数据集与模型
    • 2.3 任务说明
    • 2.4 实现关键
  • 3 关键代码
    • 3.1 数据集处理
    • 3.2 模型加载
    • 3.3 评估函数
  • 4 整体代码
  • 5 运行效果

1 环境说明

1)本次实践的框架采用torch-2.1+transformer-4.37
2)另外还采用或依赖其它一些库,如:evaluate、pandas、datasets、accelerate等

2 前期准备

2.1 了解Bert的输入输出

Bert模型是一个只包含transformer的encoder部分,并采用双向上下文和预测下一句训练而成的预训练模型。可以基于该模型做很多下游任务。

2.1 了解Bert的输入输出

Bert的输入:input_ids(使用tokenizer将句子向量化),attention_mask,token_type_ids(句子序号)、labels(结果)
Bert的输出:
last_hidden_state:最后一层encoder的输出;大小是(batch_size, sequence_length, hidden_size)
pooler_output:这是序列的第一个token(classification token)的最后一层的隐藏状态,输出的大小是(batch_size, hidden_size),它是由线性层和Tanh激活函数进一步处理的。(通常用于句子分类,至于是使用这个表示,还是使用整个输入序列的隐藏状态序列的平均化或池化,视情况而定)。(注意:这是关键输出,本次任务就需要获取该值,并进行相似度计算
hidden_states: 这是输出的一个可选项,如果输出,需要指定config.output_hidden_states=True,它也是一个元组,它的第一个元素是embedding,其余元素是各层的输出,每个元素的形状是(batch_size, sequence_length, hidden_size)
attentions:这是输出的一个可选项,如果输出,需要指定config.output_attentions=True,它也是一个元组,它的元素是每一层的注意力权重,用于计算self-attention heads的加权平均值。

2.2 数据集与模型

1)数据集来自:Chinese_Text_Similarity
2)模型权重使用:bert-base-chinese

2.3 任务说明

1)文本相似度任务就是判断2段文本的相似程度,可以理解为是否表达相同的意思。这时可能想到的最简单的方法就是将2段文本作为输入,label是0或1这样一个分类方法,可以采用系列1(情感分类)的方式。但是如果找是一段文本对应多个文本之间的相似度呢?或许你会想到系列3(选择题)的方式。但是如果是一段文本对应几十万的文本之间的相似度呢?虽然系列3(选择题)也能解决问题,但是会很慢,因为你要一一匹配。这里我们可以采用一个特征提取方式,先将文本输入到模型做特征,最后在通过相似度比较函数对2段文本的特征进行比较即可,虽然也是需要每段文本都做比较,但是好处是先将文本做好特征。
在这里插入图片描述
2)这时候我们需要做的是分别将数据放入同一个BERT模型进行特征提取,然后通过相似度和余弦相似度损失计算进行模型训练即可

2.4 实现关键

1)将数据处理成对放入模型中
2)自定义模型,在forward中对2个句子分别通过bert做特征提取,然后计算相似度和余弦相似度损失

3 关键代码

3.1 数据集处理

Chinese_Text_Similarity数据集是一个txt文件,每一行分别存储“句子1”、“句子2”、“相似度”。下面代码就是读取数据并处理为模型想要的类型

# 读取数据
df = pd.read_csv(data_path, sep='\s+')
df = df.sample(n=5000)  # 取其中5000条
datasets = Dataset.from_pandas(df)
# 划分训练集和测试集
datasets = datasets.train_test_split(test_size=0.1, shuffle=True, seed=42)
# 划分训练集和验证集
train_datasets = datasets["train"].train_test_split(test_size=0.05, shuffle=True, seed=42)
datasets["train"] = train_datasets["train"]
datasets["validation"] = train_datasets["test"]
tokenizer = BertTokenizerFast.from_pretrained(model_path)

# 数据处理函数
def process_function(datas):
    sentences = []
    labels = []
    for sentence1, sentence2, label in zip(datas["句子1"], datas["句子2"], datas["相似度"]):
        sentences.append(sentence1)
        sentences.append(sentence2)
        labels.append(1 if int(label) == 1 else -1)
    tokenized_datas = tokenizer(sentences, max_length=256, truncation=True, padding="max_length")
    # 关键点:这里将2条数据合并为一组,也就是reshape,从(2倍datas数量 * max_length),变成(datas数量 * 2 * max_length)
    tokenized_datas = {k: [v[i: i + 2] for i in range(0, len(v), 2)] for k, v in tokenized_datas.items()}
    tokenized_datas["labels"] = labels
    return tokenized_datas

new_datasets = datasets.map(process_function, batched=True)

3.2 模型加载

自定义模型,模仿transformers中的其它BERT模型,继承BertPreTrainedModel(为了方便使用XXX.from_pretrained()获取模型),参照其它BERT模型写法,重新init和forward方法

class SimilarityModel(BertPreTrainedModel):

	# 不需要增加其它层
    def __init__(self, config: PretrainedConfig, *inputs, **kwargs):
        super().__init__(config, *inputs, **kwargs)
        self.bert = BertModel(config)
        self.post_init()

	# 在forward中对2个句子分别通过bert做特征提取,然后计算相似度和余弦相似度损失
    def forward(
            self,
            input_ids: Optional[torch.Tensor] = None,
            attention_mask: Optional[torch.Tensor] = None,
            token_type_ids: Optional[torch.Tensor] = None,
            position_ids: Optional[torch.Tensor] = None,
            head_mask: Optional[torch.Tensor] = None,
            inputs_embeds: Optional[torch.Tensor] = None,
            labels: Optional[torch.Tensor] = None,
            output_attentions: Optional[bool] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
    ):
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # 分别获取sentenceA 和 sentenceB的输入
        senA_input_ids, senB_input_ids = input_ids[:, 0], input_ids[:, 1]
        senA_attention_mask, senB_attention_mask = attention_mask[:, 0], attention_mask[:, 1]
        senA_token_type_ids, senB_token_type_ids = token_type_ids[:, 0], token_type_ids[:, 1]

        # 分别获取sentenceA 和 sentenceB的向量表示
        senA_outputs = self.bert(
            senA_input_ids,
            attention_mask=senA_attention_mask,
            token_type_ids=senA_token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
		
		# 获得pooler_output
        senA_pooled_output = senA_outputs[1]

        senB_outputs = self.bert(
            senB_input_ids,
            attention_mask=senB_attention_mask,
            token_type_ids=senB_token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        senB_pooled_output = senB_outputs[1]  # [batch, hidden]

        # 计算相似度

        cos = CosineSimilarity()(senA_pooled_output, senB_pooled_output)

        # 计算loss

        loss = None
        if labels is not None:
            loss_fct = CosineEmbeddingLoss(0.3)
            loss = loss_fct(senA_pooled_output, senB_pooled_output, labels)

        output = (cos,)
        return ((loss,) + output) if loss is not None else output


model = SimilarityModel.from_pretrained(model_path)

3.3 评估函数

这里采用evaluate库加载accuracy准确度计算方式来做评估,本次实验将accuracy和f1的计算py文件下载下来,因此也是本地加载

# 评估函数:此处的评估函数可以从https://github.com/huggingface/evaluate下载到本地
acc_metric = evaluate.load("./evaluate/metric_accuracy.py")
f1_metric = evaluate.load("./evaluate/metric_f1.py")


def evaluate_function(eval_predict):
    predictions, labels = eval_predict
    predictions = [int(p > 0.7) for p in predictions]
    labels = [int(l > 0) for l in labels]
    acc = acc_metric.compute(predictions=predictions, references=labels)
    f1 = f1_metric.compute(predictions=predictions, references=labels)
    acc.update(f1)
    return acc

4 整体代码

"""
基于BERT做文本相似度
1)数据集来自:Chinese_Text_Similarity
2)模型权重使用:bert-base-chinese
"""

# step 1 引入数据库
import torch
from torch.nn import CosineSimilarity, CosineEmbeddingLoss

import evaluate
import pandas as pd
from typing import Optional
from datasets import Dataset
from transformers import TrainingArguments, Trainer, BertTokenizerFast, BertPreTrainedModel, PretrainedConfig, BertModel

model_path = "./model/tiansz/bert-base-chinese"
data_path = "./data/Chinese_Text_Similarity.txt"

# step 2 数据集处理
df = pd.read_csv(data_path, sep='\s+')
df = df.sample(n=5000)  # 取其中5000条
datasets = Dataset.from_pandas(df)
# 划分训练集和测试集
datasets = datasets.train_test_split(test_size=0.1, shuffle=True, seed=42)
# 划分训练集和验证集
train_datasets = datasets["train"].train_test_split(test_size=0.05, shuffle=True, seed=42)
datasets["train"] = train_datasets["train"]
datasets["validation"] = train_datasets["test"]
tokenizer = BertTokenizerFast.from_pretrained(model_path)


def process_function(datas):
    sentences = []
    labels = []
    for sentence1, sentence2, label in zip(datas["句子1"], datas["句子2"], datas["相似度"]):
        sentences.append(sentence1)
        sentences.append(sentence2)
        labels.append(1 if int(label) == 1 else -1)
    tokenized_datas = tokenizer(sentences, max_length=256, truncation=True, padding="max_length")
    # 这里将2条数据合并为一组,也就是reshape,从(2倍datas数量 * max_length),变成(datas数量 * 2 * max_length)
    tokenized_datas = {k: [v[i: i + 2] for i in range(0, len(v), 2)] for k, v in tokenized_datas.items()}
    tokenized_datas["labels"] = labels
    return tokenized_datas


new_datasets = datasets.map(process_function, batched=True)


# step 3 加载模型
class SimilarityModel(BertPreTrainedModel):

    def __init__(self, config: PretrainedConfig, *inputs, **kwargs):
        super().__init__(config, *inputs, **kwargs)
        self.bert = BertModel(config)
        self.post_init()

    def forward(
            self,
            input_ids: Optional[torch.Tensor] = None,
            attention_mask: Optional[torch.Tensor] = None,
            token_type_ids: Optional[torch.Tensor] = None,
            position_ids: Optional[torch.Tensor] = None,
            head_mask: Optional[torch.Tensor] = None,
            inputs_embeds: Optional[torch.Tensor] = None,
            labels: Optional[torch.Tensor] = None,
            output_attentions: Optional[bool] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
    ):
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # Step1 分别获取sentenceA 和 sentenceB的输入
        senA_input_ids, senB_input_ids = input_ids[:, 0], input_ids[:, 1]
        senA_attention_mask, senB_attention_mask = attention_mask[:, 0], attention_mask[:, 1]
        senA_token_type_ids, senB_token_type_ids = token_type_ids[:, 0], token_type_ids[:, 1]

        # Step2 分别获取sentenceA 和 sentenceB的向量表示
        senA_outputs = self.bert(
            senA_input_ids,
            attention_mask=senA_attention_mask,
            token_type_ids=senA_token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        senA_pooled_output = senA_outputs[1]  # [batch, hidden]

        senB_outputs = self.bert(
            senB_input_ids,
            attention_mask=senB_attention_mask,
            token_type_ids=senB_token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        senB_pooled_output = senB_outputs[1]  # [batch, hidden]

        # step3 计算相似度

        cos = CosineSimilarity()(senA_pooled_output, senB_pooled_output)  # [batch, ]

        # step4 计算loss

        loss = None
        if labels is not None:
            loss_fct = CosineEmbeddingLoss(0.3)
            loss = loss_fct(senA_pooled_output, senB_pooled_output, labels)

        output = (cos,)
        return ((loss,) + output) if loss is not None else output


model = SimilarityModel.from_pretrained(model_path)

# step 4 评估函数:此处的评估函数可以从https://github.com/huggingface/evaluate下载到本地
acc_metric = evaluate.load("./evaluate/metric_accuracy.py")
f1_metric = evaluate.load("./evaluate/metric_f1.py")


def evaluate_function(eval_predict):
    predictions, labels = eval_predict
    predictions = [int(p > 0.7) for p in predictions]
    labels = [int(l > 0) for l in labels]
    acc = acc_metric.compute(predictions=predictions, references=labels)
    f1 = f1_metric.compute(predictions=predictions, references=labels)
    acc.update(f1)
    return acc


# step 5 创建TrainingArguments
# train是4275条数据,batch_size=32,因此每个epoch的step=134,总step=402
train_args = TrainingArguments(output_dir="./checkpoints",      # 输出文件夹
                               per_device_train_batch_size=32,  # 训练时的batch_size
                               per_device_eval_batch_size=32,    # 验证时的batch_size
                               num_train_epochs=3,              # 训练轮数
                               logging_steps=50,                # log 打印的频率
                               evaluation_strategy="epoch",     # 评估策略
                               save_strategy="epoch",           # 保存策略
                               save_total_limit=3,              # 最大保存数
                               load_best_model_at_end=True      # 训练完成后加载最优模型
                               )

# step 6 创建Trainer
trainer = Trainer(model=model,
                  args=train_args,
                  train_dataset=new_datasets["train"],
                  eval_dataset=new_datasets["validation"],
                  compute_metrics=evaluate_function,
                  )


# step 7 训练
trainer.train()

# step 8 模型评估
evaluate_result = trainer.evaluate(new_datasets["test"])
print(evaluate_result)


# step 9 模型预测
class SentenceSimilarityPipeline:

    def __init__(self, model, tokenizer) -> None:
        self.model = model.bert
        self.tokenizer = tokenizer
        self.device = model.device

    def preprocess(self, senA, senB):
        return self.tokenizer([senA, senB], max_length=128, truncation=True, return_tensors="pt", padding=True)

    def predict(self, inputs):
        inputs = {k: v.to(self.device) for k, v in inputs.items()}
        return self.model(**inputs)[1]  # [2, 768]

    def postprocess(self, logits):
        cos = CosineSimilarity()(logits[None, 0, :], logits[None,1, :]).squeeze().cpu().item()
        return cos

    def __call__(self, senA, senB):
        inputs = self.preprocess(senA, senB)
        logits = self.predict(inputs)
        result = self.postprocess(logits)
        if result >= 0.7:
            return "相似"
        return "不相似"


pipe = SentenceSimilarityPipeline(model, tokenizer)
print(pipe("广东哪里最好玩啊?", "广东最好玩的地方在哪?"))

5 运行效果

在这里插入图片描述

注:本文参考来自大神:https://github.com/zyds/transformers-code

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/633308.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

RisingWave 用户定义函数 (一) :概览

|作者:王润基 RisingWave Labs 内核开发工程师 用户定义函数(User Defined Function,以下简称 UDF)是数据系统中的常见功能。它允许用户使用各种语言定义自己的函数,作为内置函数的补充,以实现…

【前端】使用 Canvas 实现贪吃蛇小游戏

使用 Canvas 实现贪吃蛇小游戏 在这篇博客中,我们将介绍如何使用 HTML5 Canvas 和 JavaScript 实现一个简单的贪吃蛇(Snake)小游戏。这个项目是一个基础的游戏开发练习,它可以帮助你理解如何在 Canvas 上绘图、如何处理用户输入以…

【九十三】【算法分析与设计】719. 找出第 K 小的数对距离,N 台电脑的最长时间,二分答案法

719. 找出第 K 小的数对距离 - 力扣&#xff08;LeetCode&#xff09; 数对 (a,b) 由整数 a 和 b 组成&#xff0c;其数对距离定义为 a 和 b 的绝对差值。 给你一个整数数组 nums 和一个整数 k &#xff0c;数对由 nums[i] 和 nums[j] 组成且满足 0 < i < j < nums.le…

校园网拨号上网环境下多开虚拟机,实现宿主机与虚拟机互通,并访问外部网络

校园网某些登录客户端只允许同一时间一台设备登录&#xff0c;因此必须使用NAT模式共享宿主机的真实IP&#xff0c;相当于访问外网时只使用宿主机IP&#xff0c;此方式通过虚拟网卡与物理网卡之间的数据转发实现访问外网及互通 经验证&#xff0c;将centos的物理地址与主机物理…

UMPNet: Universal Manipulation Policy Network for Articulated Objects

1. 摘要 UMPNet是一个基于图像的策略网络&#xff0c;能够推理用于操纵铰接物体的闭环动作序列。该策略支持6DoF动作表示和可变长度轨迹。 为处理多种类的物体&#xff0c;该策略从不同的铰接结构中学习&#xff0c;并泛化到未见过的物体或类别上。该策略是以自监督探索的方式…

利用Python队列生产者消费者模式构建高效爬虫

目录 一、引言 二、生产者消费者模式概述 三、Python中的队列实现 四、生产者消费者模式在爬虫中的应用 五、实例分析 生产者类&#xff08;Producer&#xff09; 消费者类&#xff08;Consumer&#xff09; 主程序 六、总结 一、引言 随着互联网的发展&#xff0c;信…

css使用clip-path裁剪出不规则图形并绑定点击事件

点击图片的红色区域触发事件 点击图片黑色不触发点击事件&#xff0c;代码演示效果如下&#xff1a; 代码演示效果 1.png&#xff08;尺寸 200*470&#xff09; <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><…

2025第十届美陈展

展位又遭疯抢&#xff01;2025第十届美陈展释放“无界之美” 美是全球通用的语言&#xff0c;人类对美的追求始终如一&#xff0c;大众审美在经历了时代的变迁后开始趋同&#xff0c;东方文明深处的美学经济开始崛起。 在如今商业迈入存量阶段&#xff0c;以品牌为突破口打造…

抽象工厂模式(AbstractFactoryPattern)

文章目录 1.抽象工厂模式定义2.UML类图3.抽象工厂模式具体实现工厂模式实现单一产品族抽象工厂实现多产品族产品类工厂类使用 4.抽象工厂模式优缺点 1.抽象工厂模式定义 提供一个创建一系列相关或相互依赖对象的接口&#xff0c;而无需指定它们具体的类。 工厂方法模式是单一产…

JavaScript-运算符

算术运算符 返回结果为数字型的运算符 加法运算符 加法运算符&#xff08;&#xff09;是一个二元运算符&#xff0c;可以对两个数字型的操作数进行相加运算&#xff0c;返回值是两个操作数的和 减法运算符 减法运算符&#xff08;-&#xff09;是一个二元运算符&#xff0c;可…

banner2.0自定义轮播布局

说明&#xff1a;最近碰到一个需求&#xff0c;让新闻列表实现轮播图的效果&#xff0c;也就是轮播新闻&#xff0c;然后样式必须按照ui设计的样式来弄&#xff0c;之前传统的banner&#xff0c;都是只轮播图片&#xff0c;没想到&#xff0c;这次居然要轮播新闻&#xff0c; 网…

【深度学习】YOLOv8训练,交通灯目标检测

文章目录 一、数据处理二、环境三、训练 一、数据处理 import traceback import xml.etree.ElementTree as ET import os import shutil import random import cv2 import numpy as np from tqdm import tqdmdef convert_annotation_to_list(xml_filepath, size_width, size_he…

java+ vue.js+uniapp一款基于云计算技术的企业级生产管理系统,云MES源码 MES系统如何与ERP系统集成?

java vue.jsuniapp一款基于云计算技术的企业级生产管理系统&#xff0c;云MES源码&#xff0c;MES系统如何与ERP系统集成&#xff1f; MES系统&#xff08;制造执行系统&#xff09;与ERP系统&#xff08;企业资源规划系统&#xff09;的集成可以通过多种方式实现&#xff0c;这…

【git】开发提交规范(feat、fix、perf)

这段时间收到的需求很多&#xff0c;可能是临近两周一次的大版本灰度上线&#xff0c;这次产生了一个关于git的思考&#xff0c;就是各个版本之间怎么管理的问题&#xff0c;这里做出我自己的一些方法。 首先&#xff0c;既然已经明确了remote分支中的release分支为主分支&…

Java中transient关键字

transient介绍 在Java中&#xff0c;transient是一个关键字&#xff0c;用于声明一个字段在序列化过程中应该被忽略。当一个对象被序列化时&#xff0c;它的状态&#xff08;即其字段的值&#xff09;通常会被保存到字节流中&#xff0c;以便稍后可以反序列化恢复对象的状态。…

如何使用Matlab进行三角剖分(自定义函数实现delaunayTriangulation 使用Bowyer-Watson 算法)

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 目录 前言 一、Delaunay三角形 二、使用步骤 1.Bowyer-Watson算法 2.算法步骤 三、动画演示 四、核心代码 五、对比matlab自带函数和我们的算法&#xff1a; 总结 前…

巨某量引擎后台登录实战笔记 | Playwright自动化框架

前言 本文章中所有内容仅供学习交流&#xff0c;抓包内容、敏感网址、数据接口均已做脱敏处理&#xff0c;严禁用于商业用途和非法用途&#xff0c;否则由此产生的一切后果均与作者无关&#xff0c;若有侵权&#xff0c;请联系我立即删除&#xff01; 入正题看看滑块是怎么个事…

CasaOS系统玩客云安装内网穿透工具实现无公网IP远程访问

文章目录 前言1. CasaOS系统介绍2. 内网穿透安装3. 创建远程连接公网地址4. 创建固定公网地址远程访问 前言 2月底&#xff0c;玩客云APP正式停止运营&#xff0c;不再提供上传、云添加功能。3月初&#xff0c;有用户进行了测试&#xff0c;局域网内的各种服务还能继续使用&am…

Ai自动贴图直播项目的趋势,智享自动直播GMV增加工具

在当今社会&#xff0c;直播行业正在悄然地改变着人们的生活方式。无论是在闲暇时光中放松身心&#xff0c;还是在临睡前享受休闲娱乐&#xff0c;观众们越来越习惯于通过刷短视频或者观看直播来消遣自己。根据统计数据显示&#xff0c;到2023年全球将有超过10.74亿网民&#x…

Android 12系统源码_多窗口模式(二)系统实现分屏的功能原理

前言 上一篇我们具体分析了系统处于多窗口模式下&#xff0c;Android应用和多窗口模式相关方法的调用顺序&#xff0c;对于应用如何适配多窗口模式有了一个初步的认识&#xff0c;本篇文章我们将会结合Android12系统源码&#xff0c;具体来梳理一下系统是如何触发多窗口分屏模…